Isothermal Vapor-Liquid Equilibrium of 1,2-Dibromoethane + Tetrachloromethane at Temperatures between 283.15 and 323.15 K

Pascual Pérez, José Valero, and Mariano Gracia*

Departamento de Química Orgánica-Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain

Vapor pressures of 1,2-dibromoethane + tetrachloromethane, at 5 K intervals between 283.15 and 323.15 K, were measured by a static method. Activity coefficients and excess molar Gibbs free energies $G^{\rm E}$ were calculated by Barker's method. Reduction of the vapor pressure results is well represented by the Redlich-Kister, Wilson, and NRTL correlations.

Introduction

In previous papers, excess enthalpies (1) and dielectric behavior (2) of 1,2-dibromoethane + tetrachloromethane were measured. In this paper we report vapor pressures at nine temperatures between 283.15 and 323.15 K. As far as we know, the only previous measurements on this mixture are those of Birdi et al (3) at 293.15 K where $G^{\rm E}$ -(x=0.5) = 454 J mol⁻¹ is about 10% higher than our value. These results can be used to understand conformational equilibrium in 1,2-dibromoethane and the proximity effect, and to determine the parameters in group contribution models.

Experimental Section

Tetrachloromethane was from Fluka (better than 99.8 mol % pure), and 1,2-dibromoethane was from Merck (better than 99 mol % pure). The liquids were used without further purification. Gas chromatography failed to show any significant impurities in 1,2-dibromoethane.

The total vapor pressure measurements were performed by a static method whose experimental details are described elsewhere (4, 5). For preventing condensation effects on the mercury meniscus, the temperature of the manometer was maintained at 325.0 K by circulating water thermostated to ± 0.1 K. The temperature of the liquid sample was measured by a set of Beckmann thermometers, previously checked against the vapor pressure of benzene (Merck, better than 99.9 mol %), along with Ambrose's equation (6) relating temperature (T_{68}) with pressure by means of a sum of Chebyshev polynomials up to degree 6. The liquids were degassed by magnetic stirring under their own vapor pressures before mixing. The cell containing

Table 1. Vapor Pressure P and Molar Volumes V of the Pure Compounds Used in the Barker Analysis

	tetrachle	orometh	ane	1,2-dibromoethane				
		P° /	kPa		j	P°/kPa		
T/K	$V^{\circ}/(\mathrm{cm}^{3}\mathrm{\cdot mol}^{-1})^{a}$	this work	lit. (7)	V°/ (cm³•mol ⁻¹)ª	this work	lit.		
283.15	95.08	7.507	7.514	85.17	0.595	0.580 (8)		
288.15	95.75	9.600	9.603	85.65	0.840			
293.15	96.43	12.127	12.149	86.13	1.120	1.072 (3, 8)		
298.15	97.11	15.211	15.227	86.62	1.515	1.612 (9)		
303.15	97.81	18.928	18.915	87.11	1.993	1.932 (8)		
308.15	98.52	23.291	23.300	87.62	2.606	2.949 (10)		
313.15	99.24	28.468	28.478	88.13	3.369			
318.15	99.97	34.530	34.546	88.64	4.336			
323.15	100.71	41.517	41.615	89.15	5.477			

^a Experimental.

Figure 1. Excess molar Gibbs energies G^{E} , at 10 K intervals, for $x \ 1,2-C_{2}H_{4}Br_{2} + (1-x) \operatorname{CCl}_{4}$.

Figure 2. Excess molar enthalpies, H^{E} , at 298.15 K, for x 1,2- $C_2H_4Br_2 + (1 - x)$ CCl₄: solid line, this work from the Gibbs-Helmholtz equation; (\bigcirc) ref 1; (\bigcirc) ref 17; (\square) ref 18; (\blacksquare) ref 19.

0021-9568/94/1739-0789\$04.50/0 © 1994 American Chemical Society

Table 2.	Experimental	Vapor Pressure	Data, Activity	⁷ Coefficients,	and Excess	Molar	Gibbs I	Energy	Calculated	from
Redlich-	Kister, Wilson,	and NRTL Corr	elations for C	$Cl_4(1) + 1,2-C$	$_{2}\mathbf{H}_{4}\mathbf{Br}_{2}$ (2)					

			Redlich-Kis	ter		Wilsor	1		NRTL	
x_2	P/kPa	γ1	γ_2	$G^{E/(J \cdot mol^{-1})}$	γ1	γ2	$G^{\mathbb{E}/(J\cdot \mathrm{mol}^{-1})}$	γ1	γ2	$G^{E/(J \cdot mol^{-1})}$
					283.15	К				
0.0725	7.053	1.0033	1.8271	110	1.0035	1.8330	111	1.0034	1.8290	110
0.2111	6.291	1.0293	1.5660	277	1.0301	1.5646	278	1.0296	1.5655	277
0.2745	5.965	1.0508	1.4684	333	1.0517	1.4666	334	1.0511	1.4678	333
0.3892	5.370	1.1075	1.3212	402	1.1081	1.3204	402	1.1077	1.3210	402
0.4634	5.004	1.1583	1.2438	424	1.1583	1.2440	424	1.1583	1.2438	424
0.6297	4.110	1.3244	1.1133	404	1.3222	1.1151	405	1.3237	1.1138	404
0.7523	3.249	1.5087	1.0504	327	1.5063	1.0521	329	1.5080	1.0509	327
0.8222	2.700	1.6458	1.0260	258	1.6458	1.0272	260	1.6458	1.0263	259
0.9245	1.632	1.9022	1.0047	125	1.9141	1.0051	126	1.9056	1.0048	125
0725	9.071	1.0031	1 7980	109	288.15	K 1 8093	111	1.0034	1 8058	110
) 9119	8 0/3	1.0001	1 5/98	274	1 0298	1.5466	276	1 0294	1.5055	276
2747	7 631	1 0493	1 4548	330	1 0512	1 4509	332	1 0506	1 4520	331
3895	6 894	1 1055	1 3103	399	1 1066	1.3086	399	1 1062	1 3091	399
4636	6.446	1.1558	1.2342	420	1.1556	1.2346	420	1.1556	1.2345	420
0.6300	5.256	1.3188	1.1066	398	1.3143	1.1100	400	1.3158	1.1089	399
7525	4 194	1 4946	1.0464	320	1,4902	1.0496	324	1,4918	1.0485	323
8224	3 474	1 6218	1 0236	252	1 6223	1 0258	256	1.6223	1.0251	255
.9246	2.114	1.8511	1.0042	120	1.8728	1.0048	124	1.8656	1.0046	123
					293.15	К				
.0726	11.424	1.0035	1.7875	111	1.0034	1.7863	110	1.0034	1.7833	110
.2113	10.211	1.0298	1.5288	275	1.0296	1.5294	275	1.0291	1.5301	274
.2749	9.643	1.0509	1.4352	330	1.0507	1.4358	330	1.0502	1.4368	329
.3896	8.747	1.1051	1.2973	396	1.1050	1.2976	396	1.1047	1.2979	396
.4639	8.135	1.1529	1.2256	416	1.1530	1.2256	416	1.1531	1.2254	416
.6303	6.625	1.3063	1.1054	395	1.3067	1.1052	395	1.3080	1.1041	394
0.7528	5.266	1.4748	1.0473	319	1.4750	1.0471	319	1.4762	1.0462	317
.8226	4.390	1.6000	1.0246	252	1.5999	1.0245	252	1.5997	1.0238	250
.9248	2.710	1.8355	1.0045	121	1.8344	1.0045	121	1.8278	1.0043	120
0726	14 361	1.0033	1 7589	109	298.15	K 1 7600	109	1 0039	1 7571	109
9115	19 202	1.0033	1 5144	103	1.0035	1 5149	273	1.0032	1 5150	272
.2110	12.000	1.0285	1 4949	212	1.0200	1 4941	210	1.0202	1.0100	212
2000	10.047	1 1010	1 2006	303	1 1090	1.4241	303	1 1017	1.4200	303
1.3900	10.947	1.1019	1.2900	419	1.1020	1.2500	419	1.1017	1.2909	419
6208	10.230	1.1404	1.2209	300	1.1404	1.2210	303	1 3000	1.2203	300
7531	6 642	1 4634	1.1027	317	1 4628	1.1001	317	1 4641	1.1022	316
8228	5 550	1.4004 1.5847	1 0238	250	1 5846	1 0241	251	1 5846	1.0235	249
).9249	3.462	1.8106	1.0043	120	1.8134	1.0044	121	1.8075	1.0043	120
					303.15	К				
).0727	17.861	1.0033	1.7350	109	1.0032	1.7323	108	1.0031	1.7297	108
.2118	15.949	1.0282	1.4965	270	1.0277	1.4977	270	1.0274	1.4984	269
.2759	15.117	1.0482	1.4096	325	1.0477	1.4109	324	1.0473	1.4117	324
.3904	13.640	1.0992	1.2819	390	1.0989	1.2825	390	1.0987	1.2828	390
.4643	12.734	1.1439	1.2153	410	1.1440	1.2152	410	1.1441	1.2151	410
.6315	10.342	1.2893	1.1014	390	1.2904	1.1005	389	1.2916	1.0997	389
.7536	8.275	1.4487	1.0459	315	1.4497	1.0453	315	1.4508	1.0444	314
.8231	6.929	1.5678	1.0240	250	1.5675	1.0236	249	1.5675	1.0230	247
.9251	4.376	1.7937	1.0044	121	1.7892	1.0043	120	1.7836	1.0042	119
0790	91 000	1 0094	1 7169	100	308.15	K 1 7199	108	1 0091	1 7101	109
0129	10 666	1.0034	1.7102	109	1.0032	1.7123	260	1.0031	1.7101	108
.4142 9766	19,000	1.0202	1.4009	⊿10 909	1.0270	1.4020	207 202	1.0212	1 2020	200 202
2010	16 015	1.0401	1.0900	020 997	1.04/4	1.09/4	040 227	1.0470	1.0902	0∠0 207
1640	10.010	1.1410	1.2/18	301 100	1 1 4 1 0	1.2720	301	1 1 4 1 0	1.2720	301
.404ð	10.000	1.1410	1.2075	400 205	1.1410	1.20/3	400 904	1.1419	1.2072	400
0322	12.750	1.2024	1.0970	300 911	1.2041	1.0903	004 910	1.4001	1.0900	304 900
.104Z 9992	10.200 9 547	1.4000	1.0442	01E	1 5400	1 0994	010 014	1.4019	1.0424	019 019
.0250 .9253	5.470	1.5494 1.7643	1.0231	240 119	1.7573	1.0224 1.0041	118	1.7524	1.0040	243 117
					313.15	К				
0.0730	26.883	1.0032	1.6916	108	1.0031	1.6899	107	1.0030	1.6878	107
.2127	24.049	1.0272	1.4679	267	1.0269	1.4688	267	1.0265	1.4694	267
.2776	22.785	1.0467	1.3852	321	1.0464	1.3861	321	1.0460	1.3869	321
.3918	20.561	1.0955	1.2652	384	1.0954	1.2656	384	1.0952	1.2659	384
).4653	19.200	1.1381	1.2026	403	1.1382	1.2025	404	1.1383	1.2024	404
.6323	15.605	1.2759	1.0950	383	1.2767	1.0944	382	1.2777	1.0937	382
0.7542	12.567	1.4250	1.0428	309	1.4255	1.0424	308	1.4265	1.0417	308
).8240	10.496	1.5357	1.0222	244	1.5354	1.02 19	243	1.5354	1.0214	242
.9256	6.777	1.7412	1.0041	117	1.7382	1.0040	117	1.7337	1.0039	116
0700	99,000	1 0001	1 0000	107	318.15	K	100	1 0000	1 66 47	100
J.U/33 \ 9199	02.009	1.0031	1.0082	107	1.0030	1.0007	100	1.0029	1.0047	100
1.4100	47.400	1.0200	1 4001	200	1 1/201/	1 4003	200	1.11407	1.4004	201i)

Table	2	(Con	tinu	ed)
-------	---	------	------	-----

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NRTL			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[-1)			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
0.3928 24.958 1.0929 1.2595 382 1.0928 1.2598 382 1.0925 1.2601 382 0.4660 23.279 1.1343 1.1988 401 1.1344 1.1988 402 1.1344 1.1987 402 0.6332 19.020 1.2694 1.0935 381 1.2701 1.0930 381 1.2710 1.0923 381 0.7548 15.281 1.4156 1.0423 308 1.4161 1.0419 308 1.4171 1.0413 307				
0.4660 23.279 1.1343 1.1988 401 1.1344 1.1988 402 1.1344 1.1987 402 0.6332 19.020 1.2694 1.0935 381 1.2701 1.0930 381 1.2710 1.0923 381 0.7548 15.281 1.4156 1.0423 308 1.4161 1.0419 308 1.4171 1.0413 307				
0.6332 19.020 1.2694 1.0935 381 1.2701 1.0930 381 1.2710 1.0923 381 0.7548 15.281 1.4156 1.0423 308 1.4161 1.0419 308 1.4171 1.0413 307 0.0000 15.261 1.6201 0.010 0.401 1.5202 1.0214 0.41				
0.7548 15.281 1.4156 1.0423 308 1.4161 1.0419 308 1.4171 1.0413 307				
0.8239 12.874 1.5234 1.0221 244 1.5232 1.0219 243 1.5233 1.0214 242				
0.9259 8.397 1.7267 1.0040 117 1.7243 1.0040 116 1.7200 1.0038 116				
323.15 K				
0.0735 39.306 1.0033 1.6631 108 1.0031 1.6587 107 1.0030 1.6567 107				
$0.2141 35.202 1.0272 1.4442 \qquad 268 \qquad 1.0265 1.4461 \qquad 267 \qquad 1.0261 1.4467 \qquad 267 \qquad 0.2141 0.21411 0.21411 0.21411 0.21411 0.21411 0.21411 0.21411 0.21411 0.21411 0.21411 0.21411 0.21411 0.21411 0.21411 0.21411 0.214111 0.214111 0.214111 0.2141111 0.21411111111111111111111111111111111111$				
0.2803 33.311 1.0468 1.3637 322 1.0459 1.3658 321 1.0456 1.3665 321				
0.3940 30.059 1.0938 1.2507 383 1.0935 1.2515 383 1.0932 1.2519 383				
0.4670 28.063 1.1343 1.1921 401 1.1346 1.1918 401 1.1346 1.1918 401				
0.6344 22.909 1.2657 1.0904 379 1.2679 1.0888 378 1.2687 1.0882 378				
0.7556 18.453 1.4066 1.0411 306 1.4085 1.0398 304 1.4093 1.0392 303				
0.8245 15.563 1.5108 1.0216 242 1.5104 1.0206 240 1.5105 1.0202 239				
0.9264 10.222 1.7088 1.0039 116 1.6996 1.0037 114 1.6962 1.0036 113				

Table 3. Parameters and Standard Deviations $\sigma(P)$ of Eqs 1-3 for CCl₄ (1) + 1,2-C₂H₄Br₂ (2)

		Redlich-	-Kister			Wilson		NRTL			
T/K	A_0	A_1	A_2	σ(P)/ Pa	$\frac{(\lambda_{12} - \lambda_{11})}{(\mathbf{J} \cdot \mathbf{mol}^{-1})}$	$\begin{array}{c} (\lambda_{21}-\lambda_{22}) \\ (\mathbf{J}\text{\cdot}\mathbf{mol}^{-1}) \end{array}$	σ(P)/ Pa	$(g_{12} - g_{22})/(J \cdot mol^{-1})$	$(g_{21} - g_{11})/(J \cdot mol^{-1})$	σ(P)/ Pa	
283.15	0.7264	-0.0367	0.0006	11	983	935	11	1334	506	11	
288.15	0.7067	-0.0271	-0.0113	15	919	708	17	1255	556	16	
293.15	0.6878	-0.0249	0.0106	17	850	1010	16	1172	611	16	
298.15	0.6725	-0.0266	0.0060	18	865	984	17	1215	561	18	
303.15	0.6555	-0.0299	0.0134	19	869	960	19	1242	518	20	
308.15	0.6388	-0.0248	0.0149	19	806	996	20	1169	566	23	
313.15	0.6247	-0.0253	0.0104	21	811	978	21	1197	528	23	
318.15	0.6119	-0.0293	0.0098	24	845	936	23	1269	452	25	
323.15	0.6009	-0.0225	0.0159	43	753	1013	45	1151	555	48	

the sample was immersed in a water bath, the temperature of which was maintained constant within better than ± 5 mK using a Haake F3 instrument. Manometer readings were made with a Wild KM-305 cathetometer to within ± 0.01 mm. The reproducibility of the pressure measurements is estimated to be better than ± 10 Pa. Errors in the mole fraction are estimated to be less than ± 0.0002 . A densimeter (Anton Paar DMA 60/DMA 602) was used for the density measurements on the pure components.

Results

Molar volumes and vapor pressures of the pure compounds are collected in Table 1. The virial coefficient of tetrachloromethane $(B_{11} = -1330 \text{ cm}^3 \text{ mol}^{-1})$ at 325.0 K was obtained from those values tabulated by Dymond and Smith (11), and that of 1,2-dibromoethane $(B_{22} = -3442 \text{ cm}^3 \text{ mol}^{-1})$ from the Tsonopoulos correlation (12). The cross virial coefficient $(B_{12} = -2221 \text{ cm}^3 \text{ mol}^{-1})$ was calculated using a Lorentz-type combination rule.

Table 2 shows our vapor pressure measurements along with the activity coefficients γ_1 and γ_2 and the excess molar Gibbs free energy G^E values fitted to the Redlich-Kister, Wilson (13), and NRTL (14) correlations by Barker's method (15).

Redlich-Kister:

$$G^{\rm E}/RT = x_1 x_2 \sum_{i=0}^{2} A_i (x_1 - x_2)^i \tag{1}$$

Wilson:

$$G^{\rm E}/RT = -x_1 \ln(x_1 + \Lambda_{12}x_2) - x_2 \ln(x_2 + \Lambda_{21}x_1) \quad (2)$$

where

$$\Lambda_{ij} = rac{V_j^\circ}{V_i^\circ} \exp \Bigl(- rac{\lambda_{ij} - \lambda_{ii}}{RT} \Bigr)$$

NRTL:

with

$$G_{ij} = \exp(-lpha_{ij} au_{ij})$$
 and $au_{ij} = rac{g_{ij} - g_{jj}}{RT}$

 $\frac{G^{\rm E}}{RT} = x_1 x_2 \left(\frac{\tau_{21} G_{21}}{x_1 + x_2 G_{21}} + \frac{\tau_{12} G_{12}}{x_2 + x_1 G_{12}} \right)$

 $(\mathbf{3})$

 V° is the molar volume, x_2 is the mole fraction of 1,2dibromoethane, and λ 's and g's are energy parameters of interaction between the molecules designated in the subscripts. The parameter α_{12} is related to the nonrandomness in the mixture and for which we have used the typical value $\alpha_{12} = 0.3$ (16). For a given composition, the sample temperature is changed and a slight variation of the true liquid mole fraction may be detected in Table 2 according to the variable composition of the vapor phase. The coefficients of eqs 1–3 together with the standard deviations are collected in Table 3. The vapor pressure data are well represented by the three correlations. Excess molar Gibbs energy curves, at 10 K intervals, are shown in Figure 1, and a negative temperature coefficient is observed.

By regarding the molar excess enthalpy $H^{\rm E}$ as independent of the temperature, we have fitted $G^{\rm E}/T$ data with a first-degree polynomial in 1/T, and according to the Gibbs-Helmholtz equation the derivative gives $H^{\rm E}$. The $H^{\rm E}$ calculated values at round mole fractions are shown as a curve in Figure 2 together with experimental data found in the literature. At x = 0.5, the calculated excess enthalpy is about 20% higher than the experimental value.

Literature Cited

- Morón, M. C.; Pérez, P.; Gracia, M.; Gutiérrez Losa, C. J. Chem. Thermodyn. 1985, 17, 733.
 Morón, M. C.; Pérez, P.; Royo, F.; Gracia, M.; Gutiérrez Losa, C.
- Rev. Acad. Cienc. Exactas, Fis., Quim. Nat. Zaragoza 1985, 40,
- (3) Birdi, G. S.; Vij, J. N.; Mahl, B. S. Thermochim. Acta 1974, 10, 253.
- Pardo, J.; Pérez, P.; Royo, F.; Gracia, M.; Gutiérrez Losa, C. J. Chem. Thermodyn. 1987, 19, 521.
 Gracia, M.; Sánchez, F.; Pérez, P.; Valero, J.; Gutiérrez Losa, C. J. Chem. Thermodyn. 1992, 24, 463.

- 66, 211.
- (10) Kalra, K. C.; Singh, K. C.; Soni, M.; Spah, D. C. J. Chem. Thermodyn. 1990, 22, 771.

- (11) Dymond, J. H.; Smith, E. B. The Virial Coefficients of Gases; Clarendon Press: New York, 1969.
- (12) Tsonopoulos, C. AIChE J. 1974, 20, 263.
- (13) Wilson, G. M. J. Am. Chem. Soc. 1964, 86, 127.
- (14) Renon, H.; Prausnitz, J. M. AIChE J. 1968, 14, 135.
- (15) Barker, J. A. Aust. J. Chem. 1953, 6, 207.
- (16) Prausnitz, J. M.; Lichtenthaler, R. N.; Gomes de Azevedo, E. Molecular Thermodynamics of Fluid-Phase Equilibria; Prentice-Hall: Englewood Cliffs, NJ, 1986; p 237.
- (17) Blanco, S.; Muñoz Embid, J.; Otin, S. Fluid Phase Equilib. 1993, 91, 281.
- (18) Mahl, B. S.; Kooner, Z. S.; Khurma, J. R. Thermochim. Acta 1976, 2, 256.
- (19) Hirobe, H. J. Fac. Sci., Imp. Univ. Tokyo 1926, 1, 155.

Received for review February 24, 1994. Accepted May 4, 1994.*

[®] Abstract published in Advance ACS Abstracts, August 1, 1994.